聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

《AI落地的跨域学习技术和进展》技术论坛将于CNCC期间,10月24日下午16:00-18:00,在北京新世纪日航饭店2层江苏厅举行。本论坛邀请跨域学习领域、学术界的顶尖学者和工业界的领军人物一起,聚焦AI落地过程中跨域学习起到的重要作用,一起探讨跨域学习的技术前沿和进展。欢迎光临!

今年CNCC大会将于 10月22-24日在北京(主会场)举行,全国多地设立分会场和专场并进行同步线上直播。今年除讲者阵容十分强大外(首批KN讲者确认:图灵奖得主、院士、名企专家将做特邀报告),活动也十分多。包括三场大会论坛、百余场技术论坛、CTO Club峰会首发、14场特邀报告、CCF颁奖晚宴、优秀大学生颁奖等,精彩纷呈,不容错过。

技术论坛丰富多彩、嘉宾阵容强大、话题前沿,其中10月24日下午16:00-18:00,在北京新世纪日航饭店2层江苏厅举行的《 AI落地的跨域学习技术和进展》技术论坛,将邀请跨域学习领域学术界的顶尖学者和工业界的领军人物一起,聚焦AI落地过程中跨域学习起到的重要作用,以及AI落地痛点等尖锐问题展开探讨,一起探讨跨域学习的技术前沿和进展,欢迎光临!

扫码报名

AI落地的痛点,跨域学习的技术和进展

传统的机器学习和现在的深度学习都依赖大量的标注数据,并在监督下训练出表现优异以及具备一定泛化能力的模型。但随着感知环境及应用场景的变化,训练好的模型性能会大幅度下降,重新训练周期长成本高,再加上AI人才的短缺,都成为AI落地和普惠的障碍。如何解决跨域学习、数据标注以及数据隐私问题,训练更具泛化性、鲁棒性的模型成为学术界和工业界面临的共同课题。在此背景下,跨域学习和迁移学习成为近年来研究的前沿热点。

通用智能是下一代AI发展的必然趋势,代表智能革命的未来。跨域学习、迁移学习、无监督学习、自监督学习等将在未来几年实现在多个领域的落地生根,正在成为AI大规模落地的希望。本论坛邀请跨域学习领域走在国际算法前沿的学术界顶尖学者和已在产业应用中实现落地的工业界领军人物,共同探讨AI落地的跨域学习技术和进展。

论坛议程日程

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

论坛主席

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

申省梅

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

陈熙霖

讲者简介

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

杨强

微众银行首席人工智能官、香港科技大学讲席教授,AAAI、ACM、CAAI、IEEE、IAPR、AAAS Fellow,《IEEE Transactions on Big Data》和《ACM Transactions on Intelligent Systems and Technology》开创主编,曾获2019年度“吴文俊人工智能科学技术奖”杰出贡献奖,2017年ACM SIGKDD杰出服务奖。他曾任华为诺亚方舟实验室主任,第四范式公司联合创始人,香港科技大学计算机与工程系系主任以及国际人工智能联合会(IJCAI)理事会主席。最近的著作有《迁移学习》和《联邦学习》。

演讲题目:用户隐私,数据孤岛和联邦学习

摘要:联邦学习,是当前人工智能尤其是AI金融领域,最受工业界和学术界关注的研究方向之一。当下,AI在算法研发方面突飞猛进,却离企业落地的目标有着不小的距离。AI所面临的一个挑战是标注数据的严重不足,而数据往往分布在不同的机构和个人形成的数据孤岛处。使用和聚合这些数据都会受到用户隐私、商业安全的挑战。本次演讲将介绍如何利用联邦学习来连接数据孤岛的数据,形成合力,以得到更有效的机器学习模型,同时保护用户隐私和商业机密。

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

邓伟洪

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

阚美娜

演讲题目:多粒度图像迁移建模

摘要:迁移学习是机器学习与计算机视觉中的重要研究问题之一,旨在研究如何将一个领域的知识迁移到另外的领域,具有重要的研究意义与应用价值。场景变化是计算机视觉应用中的重要挑战之一。本报告将介绍讲者近期在场景、类别、以及样例层面进行图像迁移建模的研究工作,旨在提升图像分类算法的场景自适应能力。

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

郑良

演讲题目:Do We Really Need Ground Truths to Evaluate A Model?

摘要:模型性能评估是机器学习的重要一步,一般来说,我们要求测试集包含测试样本与其标签,并将测试标签与模型预测结果进行比较。尽管学术界大多数数据集满足这个要求,在实际情况中,往往我们只能获取测试数据而无法获取其标签。在本次报告中,我将介绍一个重要而较少讨论的问题:模型自动评估(AutoEval)。具体地,给定有标签的训练集和一个模型,目标是估计模型在一个没有标签的测试集上的性能。为此,提出了一种meta-dataset的方法,从数据集层面上设计了一种回归模型,实现了较为理想的精度。

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

龙明盛

演讲题目:迁移学习理论,算法及开源库

摘要:迁移学习一直是机器学习领域的难点问题,其目标是在数据分布变化的条件下实现强泛化能力。经过长期探索,逐步缩小了迁移学习的泛化理论与学习算法之间的鸿沟,获得了更紧致的泛化界和更优的学习器。此次报告将按照发展历程介绍迁移学习的代表性泛化理论及学习算法,重点介绍我们的间隔泛化理论及其对抗学习算法、迁移推理中的概率校准和无监督迁移学习算法。最后,介绍我们最近开源的迁移学习算法库,为推动迁移学习的规范发展和应用落地提供支撑。

聚焦AI落地痛点,纵论跨域学习技术前沿和应用趋势 | CNCC技术论坛

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「在看」吧 !

暂无评论

暂无评论...